Senin, 24 September 2012

LEMAK DAN MINYAK

Lemak dan minyak adalah salah satu kelompok yang termasuk pada golongan lipid , yaitu senyawa organik yang terdapat di alam serta tidak larut dalam air, tetapi larut dalam pelarut organik non-polar,misalnya dietil eter (C2H5OC2H5), Kloroform(CHCl3), benzena dan hidrokarbon lainnya, lemak dan minyak dapat larut dalam pelarut yang disebutkan di atas karena lemak dan minyak mempunyai polaritas yang sama dengan pelaut tersebut.
Bahan-bahan dan senyawa kimia akan mudah larut dalam pelarut yang sama polaritasnya dengan zat terlarut . Tetapi polaritas bahan dapat berubah karena adanya proses kimiawi. Misalnya asam lemak dalam larutan KOH berada dalam keadaan terionisasi dan menjadi lebih polar dari aslinya sehingga mudah larut serta dapat diekstraksi dengan air. Ekstraksi asam lemak yang terionisasi ini dapat dinetralkan kembali dengan menambahkan asam sulfat encer (10 N) sehingga kembali menjadi tidak terionisasi dan kembali mudah diekstraksi dengan pelarut non-polar.
Lemak dan minyak merupakan senyawaan trigliserida atau triasgliserol, yang berarti “triester dari gliserol” . Jadi lemak dan minyak juga merupakan senyawaan ester . Hasil hidrolisis lemak dan minyak adalah asam karboksilat dan gliserol . Asam karboksilat ini juga disebut asam lemak yang mempunyai rantai hidrokarbon yang panjang dan tidak bercabang.
1. Penamaan lemak dan Minyak
Lemak dan minyak sering kali diberi nama derivat asam-asam lemaknya, yaitu dengan cara menggantikan akhiran at pada asam lemak dengan akhira in , misalnya :
- tristearat dari gliserol diberi nama tristearin
- tripalmitat dari gliserol diberi nama tripalmitin
selain itu , lemak dan minyak juga diberi nama dengan cara yang biasa dipakai untuk penamaan suatu ester, misalnya:
- triestearat dari gliserol disebut gliseril tristearat
- tripalmitat dari gliserol disebut gliseril tripalmitat
2. Pembentukan Lemak dan Minyak
Lemak dan minyak merupakan senyawaan trigliserida dari gliserol . Dalam pembentukannya, trigliserida merupakan hasil proses kondensasi satu molekul gliserol dan tiga molekul asam lemak (umumnya ketiga asam lemak tersebut berbeda –beda), yang membentuk satu molekul trigliserida dan satu molekul air .
 Klasifikasi lemak dan minyak
Lemak dan minyak dapat dibedakan berdasarkan beberapa penggolongan yaitu
A. Berdasarkan kejenuhnya ( ikatan rangkap)
a. Asam lemak jenuh
Asam lemak jenuh merupakan asam lemak yang mengandung ikatan tunggal pada rantai hidrokarbonnya. Asam lemak jenuh mempunyai rantai zig-zig yang dapat cocok satu sama lain, sehingga gaya tarik vanderwalls tinggi, sehingga biasanya berwujud padat. contoh dari asam lemak jenuh antara lain asam butirat (CH3(CH2)2CO2H) bersumber dari lemak susu, asam palmitat ( CH3(CH2)14CO2H ) bersumber dari lemak hewani dan nabati, asam stearat ( CH3(CH2)16CO2H ) bersumber dari lemak hewani dan nabati.
b. Asam lemak tak jenuh
.asam lemak tak jenuh merupakan asam lemak yang mengandung satu ikatan rangkap pada rantai hidrokarbonnya . asam lemak dengan lebih dari satu ikatan dua tidak lazim,terutama terdapat pada minyak nabati,minyak ini disebut poliunsaturat. Trigliserida tak jenuh ganda (poliunsaturat) cenderung berbentuk minyak.Contoh asam lemak tak jenuh adalah asam palmitoleat ( CH3(CH2)5CH=CH(CH2)7CO2H ). asam oleat (CH3(CH2)7CH=CH(CH2) 7CO2H), asam linoleat ( CH3(CH2)4CH=CHCH2CH=CH(CH2)7CO2H )
B. Berdasarkan sifat mengering
a. Minyak tak mengering ( non drying oil)
 tipe minyak zaitun, contoh: minak zaitun,minyak buah persik,minyak kacang . tipe minyak rape,contoh: minyak biji rape,minyak mustard. tipe minyak hewani contoh; minyak sapi
b. Minyak setengah mengering (semi –drying oil)
Minyak yang mempunyai daya mengering yang lebih lambat.Contohnya: minyak biji kapas ,minyak bunga matahari
c. Minyak nabati mengering (drying –oil)
Minyak yang mempunyai sifat dapat mengering jika kena oksidasi , dan akan berubah menjadi lapisan tebal , bersifat kental dan membentuk sejenis selaput jika dibiarkan di udara terbuka.
Contoh: minyak kacang kedelai, minyakbiji karet





Dasar-dasar analisa lemak dan minyak
Analisa lemak dan minyak yang umum dilakukan dapat dapat dibedakan menjadi tiga kelompok berdasarkan tujuan analisa, yaitu;
Penentuan kuantitatif, yaitu penentuan kadar lemak dan minyak yang terdapat dalam bahan mkanan atau bahan pertanian.
Penentuan kualitas minyak sebagai bahan makanan, yang berkaitan dengan proses ekstraksinya,atau ada pemurnian lanjutan , misalnya penjernihan(refining) ,penghilanganbau(deodorizing), penghilangan warna(bleaching). Penentuan tingkat kemurnian minyak ini sangat erat kaitannya dengan daya tahannya selama penyimpanan,sifat gorengnuya,baunya maupun rasanya.tolak ukur kualitas ini adalah angka asam lemak bebasnya(free fatty acid atau FFA), angka peroksida ,tingkat ketengikan dan kadar air.
Penentuan sifat fisika maupun kimia yang khas ataupun mencirikan sifat minyak tertentu. data ini dapat diperoleh dari angka iodinenya,angka Reichert-Meissel,angka polenske,angka krischner,angka penyabunan, indeks refraksi titik cair,angka kekentalan,titik percik,komposisi asam-asam lemak ,dan sebagainya.
 Analisa Lemak dan Minyak
Penentuan Sifat Lemak Minyak
Jenis-jenis lemak dan minyak dapat dibedakan berdasarkan sifat-sifatnya .
Pengujian sifat-sifat lemak dan minyak ini meliputi:
1. penentuan angka penyabunan
angka penyabunan menunjukkan berat molekul lemak dan minyak secara kasar .minyak yang disusun oleh asam lemak berantai karbon yang pendek berarti mempunyai berat molekul ytang relatif kecil, akan mempunyai angka penyabunan yang besar dan sebaliknya bila minyak mempunyai berat molekul yang besar ,mka angka penyabunan relatif kecil . angka penyabunan ini dinyatakan sebagai banyaknya (mg) NaOH yang dibutuhkan untuk menyabunkan satu gram lemak atau minyak.
2.  2. penentuan angka ester
angka ester menunjukkan jumlah asam organik yang bersenyawa sebagai ester. Angka ester dihitung dengan selisih angka penyabuanan dengan angka asam.
Angka ester = angka penyabunan –angka asam.
3. penentuan angka iodine
penentuan iodine menunjukkan ketidakjenuhan asam lemak penyusunan lemak dan minyak. Asam lemak tidak jenuh mampu mengikat iodium dan membentuk senyawaan yang jenuh. Banyaknya iodine yang diikat menunjukkan banyaknya ikatan rangkap yang terdapat dalam asam lemaknya. Angka iodine dinyatakan sebagai banyaknya iodine dalam gram yang diikat oleh 100 gram lemak atau minyak.
4. penentuan angka Reichert-Meissel
Angka Reichert-Meissel menunjukkan jumlah asam-asam lemak yang dapat larut dalam air dan mudah menguap. Angka ini dinyatakan sebagai jumlah NaOH 0,1 N dalam ml yang digunakan unutk menetralkan asam lemak yang menguap dan larut dalam air yang diperoleh dari penyulingan 5 gram lemak atau minyak pada kondisi tertentu. asam lemak yang mudah menguap dan mudah larut dalam air adalah yang berantai karbon 4-6.
Angka Reichert-Meissel = 1,1 x (ts – tb)
Dimana ts = jumlah ml NaOH 0,1 N untuk titrasi sampel
tb = jumlah ml NaOH 0,1 N untuk titrasi blanko
Penentuan Kualitas Lemak
Faktor penentu kualitas lemak atau minyak,antara lain:
1. penentu angka asam
angka asam menunjukkan banyaknya asam lemak bebas yang terdapat dalam suatu lemak atau minyak . angka asam dinyatakan sebagai jumlah miligram NaOH yang dibutuhkan untuk menetralkan asam lemak bebas yang terrdapat dalam satu gram lemak atau minyak.

2. Penentuan angka peroksida
Angka peroksida menunjukkan tingkat kerusakan dari lemak atau minyak.
3. Penentuan asam thiobarbiturat(TBA)
Lemak yang tengik mengandung aldehid dan kebanyakan sebagai monoaldehid. Banyaknya monoaldehid dapat ditentukan dengan jalan destilasi lebih dahulu. Monoaldehid kemudian direaksikan dengan thiobarbiturat sehingga terbentuk senyawa kompleks berwarna merah. Intensitas warna merah sesuai dengan jumlah monoaldehid dapat ditentukan dengan spektrofotometer pada panjang gelombang 528 nm.
Angka TBA = mg monoaldehida/kg minyak
4. Penetuan kadar minyak
penentuan kadar air dalam minyak dapat dilakukan dengan cara thermogravimetrri atau cara thermovolumetri.
5. Kegunaan Lemak dan Minyak
Lemak dan minyak merupakan senyawaan organik yang penting bagi kehidupan makhluk hidup.adapun lemak dan minyak ini antara lain:
1. Memberikan rasa gurih dan aroma yang spesipek
2. Sebagai salah satu penyusun dinding sel dan penyusun bahan-bahan biomolekul
3. Sumber energi yang efektif dibandingkan dengan protein dan karbohidrat,karena lemak dan minyak jika dioksidasi secara sempurna akan menghasilkan 9 kalori/liter gram lemak atau minyak. Sedangkan protein dan karbohidrat hanya menghasilkan 4 kalori tiap 1 gram protein atau karbohidrat.
4. Karena titik didih minyak yang tinggi, maka minyak biasanya digunakan untuk menggoreng makanan di mana bahan yang digoreng akan kehilangan sebagian besar air yang dikandungnya atau menjadi kering.
5. Memberikan konsistensi empuk,halus dan berlapis-lapis dalam pembuatan roti.
6. Memberikan tektur yang lembut dan lunakl dalam pembuatan es krim.
7. Minyak nabati adalah bahan utama pembuatan margarine
8. Lemak hewani adalah bahan utama pembuatan susu dan mentega
9. Mencegah timbulnya penyumbatan pembuluh darah yaitu pada asam lemak esensial.
6. Sifat-sifat Lemak dan Minyak
6.1 Sifat-sifat fisika Lemak dan Minyak
1. Bau amis (fish flavor) yang disebabkan oleh terbentuknya trimetil-amin dari lecitin
2. Bobot jenis dari lemak dan minyak biasanya ditentukan pada temperatu kamar
3. Indeks bias dari lemak dan minyak dipakai pada pengenalan unsur kimia dan untuk pengujian kemurnian minyak.
4. Minyak/lemak tidak larut dalam air kecuali minyak jarak (coastor oil0, sedikit larut dalam alkohol dan larut sempurna dalam dietil eter,karbon disulfida dan pelarut halogen.
5. Titik didih asam lemak semakin meningkat dengan bertambahnya panjang rantai karbon
6. Rasa pada lemak dan minyak selain terdapat secara alami ,juga terjadi karena asam-asam yang berantai sangat pendek sebaggai hasil penguraian pada kerusakan minyak atau lemak.
7. Titik kekeruhan ditetapkan dengan cara mendinginkan campuran lemak atau minyak dengan pelarut lemak.
8. Titik lunak dari lemak/minyak ditetapkan untuk mengidentifikasikan minyak/lemak
9. shot melting point adalah temperratur pada saat terjadi tetesan pertama dari minyak / lemak
10. slipping point digunakan untuk pengenalan minyak atau lemak alam serta pengaruh kehadiran komponen-komponennya
6.2 Sifat-sifat kimia Minyak dan Lemak
1. Esterifikasi
Proses esterifikasi bertujuan untuk asam-asam lemak bebas dari trigliserida,menjadi bentuk ester. Reaksi esterifikasi dapat dilakukan melalui reaksi kimia yang disebut interifikasi atau penukaran ester yang didasarkan pada prinsip transesterifikasi Fiedel-Craft.
2. Hidrolisa
Dalam reaksi hidrolisis, lemak dan minyak akan diubah menjadi asam-asam lemak bebas dan gliserol. Reaksi hidrolisi mengakibatkan kerusakan lemak dan minyak. Ini terjadi karena terdapat terdapat sejumlah air dalam lemak dan minyak tersebut.
3. penyabunan
Reaksi ini dilakukan dengan penambhan sejumlah larutan basa kepada trigliserida. Bila penyabunan telah lengkap,lapisan air yang mengandung gliserol dipisahkan dan gliserol dipulihkan dengan penyulingan.
4. Hidrogenasi
Proses hidrogenasi bertujuan untuk menjernihkan ikatan dari rantai karbon asam lemak pada lemak atau minyak . setelah proses hidrogenasi selesai , minyak didinginkan dan katalisator dipisahkan dengan disaring . Hasilnya adalah minyak yang bersifat plastis atau keras , tergantung pada derajat kejenuhan.
5. Pembentukan keton
Keton dihasilkan melalui penguraian dengan cara hidrolisa esterr.
6. Oksidasi
Oksidasi dapat berlangsung bila terjadi kontak antara sejumlah oksigen dengan lemak atau minyak . terjadinya reaksi oksidasi ini akan mengakibatkan bau tengik pada lemak atau minyak.
7. Perbedaan Antaa Lemak dan Minyak
Perbedaan antara lemak dan minyak antara lain, yaitu:
􀂃 Pada temoperatur kamar lemak berwujud padat dan minyak berwujud cair
􀂃 Gliserrida pada hewan berupa lemak (lemak hewani) dan gliserida pada tumbuhan berupa miyak (minyak nabati)
Komponen minyak terdiri dari gliserrida yang memiliki banyak asam lemak tak jenuh sedangkan komponen lemak memiliki asam lemak jenuh.
DAFTAR PUSTAKA
1. Harold Hart,” Organic Chemistry”, a Short Course, Sixth Edition,
Michigan State University, 1983, Houghton Mifflin Co.
2. Ralp J. Fessenden and Joan S. Fessenden, “ Organic Chemistry,”
Third Edition, University Of Montana, 1986, Wadsworth, Inc,
Belmont, Califfornia 94002, Massachuset, USA.
2002

Jumat, 14 September 2012

GULA REDUKSI DAN METODE PENENTUAN KADAR GULA REDUKSI


A. Karbohidrat
Kebanyakan ahli kimia kesulitan dalam mengelompokkan bahan apa saja yang termasuk ke dalam karbohidrat. Definisi klasik karbohidrat berdasarkan asal katanya yaitu carbo dari bahasa Latin dan hydros dari bahasa Yunani adalah ‘hidrat dari karbon’ yang mengandung hidrogen dan oksigen dengan perbandingan 2:1 (Southgate 1978) atau elemen yang terdiri dari air dan karbon dengan perbandingan 1:1 (Kennedy dan White 1988). Karbohidrat adalah senyawa organik yang mengandung karbon, hidrogen dan oksigen baik dalam bentuk molekul sederhana maupun kompleks (Christian dan Vaclavik 2003).
Karbohidrat telah menjadi sumber energi utama untuk metabolisme pada manusia dan sarana untuk memelihara kesehatan saluran pencernaaan manusia. Karbohidrat adalah penyumbang utama dari komponen yang membentuk produk pangan baik sebagai komponen alami maupun bahan yang ditambahkan. Karbohidrat meliputi lebih dari 90% dari berat kering tanaman. Karbohidrat banyak tersedia dan murah. Penggunaannya sangat luas dan jumlah penggunaannya cukup besar (Fennema 1996) baik untuk pemanis, pengental, penstabil, gelling agents dan fat replacer (Christian dan Vaclavik 2003). Karbohidrat dapat dimodifikasi baik secara kimia dan biokimia dan modifikasi itu digunakan untuk memperbaiki sifat dan memperluas penggunaannya.
B. Struktur karbohidrat
Karbohidrat digunakan dalam kimia untuk senyawa dengan formula Cm(H2O)n, tetapi kini rumus molekul itu tidak secara kaku digunakan untuk mendefinisikan karbohidrat (Kennedy dan White 1988). Sebelumnya beberapa ahli kimia memasukkan formaldehid dan glikoaldehid sebagai karbohidrat, namun sekarang istilah karbohidrat dalam biokimia, tidak mengikutsertakan senyawa yang kurang dari tiga atom karbon. Southgate (1978) menggunakan definisi karbohidrat sebagai
senyawa yang tersusun oleh polihidroksi aldehid, keton, alkohol, asam dan turunan sederhananya serta polimernya yang memiliki ikatan polimer tipe asetal. Menurut strukturnya karbohidrat dapat dibagi menjadi kelompok sakarida: monosakarida,
oligosakarida dan polisakarida. Monosakarida adalah gula sederhana yang tidak dapat dipecah lagi menjadi molekul yang lebih kecil dan monosakarida inilah yang menjadi unit penyusun dari oligosakarida dan polisakarida. Oligosakarida dan polisakarida tersusun dari monosakarida yang dihubungkan dengan ikatan glikosidik.5
a. Monosakarida
Monosakarida terdiri dari tiga sampai delapan karbon atom, tetapi umumnya hanya lima atau enam yang biasa ditemukan. Biasanya monosakarida digolongkan berdasarkan jumlah atom karbonnya, misalnya triosa (C3H6O3), tetrosa (C4H8O3), pentosa (C5H10O5) dan heksosa (C6H12O6).
Dari golongan tersebut dapat dibagi lagi berdasarkan gugus fungsional yang ada, misalnya dari golongan heksosa ada aminoheksosa (C6H13O5N), deoksiheksosa (C6H12O5) dan asam heksuronat (C6H10O7). Contoh monosakarida adalah glukosa dan fruktosa.
b. Oligosakarida
Oligosakarida terdiri dari beberapa monosakarida (2-10) yang saling terikat oleh ikatan glikosidik. Tetapi ada juga yang mengklasifikasikan sendiri karbohidrat dengan dua gugus gula sebagai disakarida. Menurut Christian dan Vaclavik (2003) disakarida terdiri dari dua molekul monosakarida yang bergabung dengan ikatan glikosidik. Contoh disakarida di pangan adalah maltosa, selubiosa, dan sukrosa. Oligosakarida yang memiliki lebih dari tiga gugus gula contohnya adalah rafinosa dan stakiosa.
c. Polisakarida
Polisakarida merupakan polimer dari gula sederhana yang tersusun atas lebih dari sepuluh monomer gula sederhana. Contoh polisakarida di makanan adalah pati, pektin dan gum. Ketiganya adalah polimer karbohidrat kompleks dengan sifat yang berbeda, tergantung unit gula penyusunnya, tipe ikatan glikosidik dan derajat percabangan molekul.
C. Pentingnya Analisis Total Karbohidrat
Total karbohidrat yang ada dalam bahan pangan perlu diketahui dengan alasan: standards of identity (pangan harus memiliki komposisi yang sesuai dengan regulasi pemerintah); nutritional labelling (menginformasi konsumen mengenai kadar nutrisi dalam bahan pangan); detection of adulteration (tiap tipe pangan memiliki 'fingerprint' karbohidrat); food quality (sifat fisikokimia dari pangan seperti kemanisan, penampakan, stabilitas dan tekstur tergantung tipe dan stabilitas
karbohidrat yang ada); ekonomi (agar lebih dapat menghemat biaya produksi bahan yang digunakan pada industri) dan food processing (efisiensi dari proses pangan banyak tergantung pada jenis dan kadar karbohidrat). Dalam berbagai studi mengenai bahan makanan penting untuk mengetahui persentasi kadar karbohidrat pada pangan yang diujikan sehingga nilai karbohidrat pada bahan lain dapat dikonversi menjadi nilai total pangan.
 Total Karbohidrat dalam Bahan Pangan dan Metode Analisisnya
a.Definisi total karbohidrat
Total karbohidrat atau total karbohidrat menurut Badan Pengawasan Obat dan Makanan (2005) meliputi gula, pati, serat pangan dan komponen karbohidrat lain. Pernyataan jumlah total karbohidrat dalam gram penyajian yang dinyatakan dengan nilai gram terdekat, jika penyajian kurang dari 0,5 gram, jumlah kadarnya dapat dinyatakan sebagai nol dan jika penyajian lebih dari 0,5 gram dibulatkan ke kelipatan 1 gram terdekat. Total karbohidrat dapat dinyatakan dengan total
karbohidrat by difference. Total karbohidrat dalam pengukuran karbohidrat dengan metode langsung dinyatakan dalam bentuk persen yang setara dengan glukosa. Satuan glukosa (glucose equivalent) juga dapat diganti dengan larutan gula lain yang dijadikan sebagai larutan standar.
b.Metode analisis total karbohidrat
Sejumlah teknik analisis telah dikembangkan untuk mengukur jumlah dan tipe karbohidrat yang ada di bahan pangan. Kadar karbohidrat di bahan pangan dapat diketahui dengan menghitung persentase yang tersisa setelah semua komponen lain telah diukur (total carbohydrate by difference), yaitu dengan persamaan (1.1) (SNI 01-2891-1992):
(1.1)      Metode by difference ini masih digunakan oleh FDA, tetapi metode ini dapat menghasilkan nilai yang salah karena ada kemungkinan terjadi akumulasi kesalahan dari metode-metode yang digunakan untuk mengukur komponen lain, dan kemungkinan adanya komponen non karbohidrat yang terukur sebagai karbohidrat menyebabkan penyimpangan yang lebih besar. Pengukuran kadar karbohidrat secara langsung lebih baik karena didapat hasil lebih yang akurat.
2.3.2.1. Analisis karbohidrat langsung
Metode yang telah dikembangkan untuk analisis karbohidrat sangat banyak, dan tergantungjuga oleh jenis analisis (kuantitatif atau kualitatif) dan tipe karbohidrat yang dianalisis. Sehingga metode pengukuran karbohidrat sangat beragam mulai dari metode kromatografi dan elektroforesis (Kromatografi Lapis Tipis, Kromatografi Likuid Kinerja Tinggi dan Kromatografi Gas); metode kimia (metode titrasi Lane Eynon, metode gravimetri Munson Walker, metode Luff Schoorl, metode kolorimetri seperti anthrone sulfat dan fenol sulfat); metode enzimatis; metode fisik (polarimetri, indeks refraktif, densitas dan infra merah) serta metode immunoassay. Uji karbohidrat yang resmi ditetapkan oleh BSN dalam SNI 01-2891-1992 yaitu analisis total karbohidrat dengan menggunakan metode Luff Schoorl. Pada tahun 1936 International Commission for Uniform Methods of Sugar Analysis mempertimbangkan Metode Luff-Schoorl sebagai salah satu metode yang digunakan untuk menstandarkan analisis gula pereduksi karena
metode Luff Schoorl saat itu menjadi metode yang resmi dipakai di pulau Jawa, di samping nominator lainnya yaitu metode Lane-Eynon. Tetapi pada saat itu metode kolorimetri belum banyak berkembang dan dalam catatan komisi itu terdapat agenda untuk melakukan penyeragaman analisis gula dengan metode kolorimetri.
Berikut ini adalah beberapa jenis analisis total karbohidrat langsung:
1. Analisis total karbohidrat dalam SNI 01-2891-1992
Seluruh senyawa karbohidrat yang ada dipecah menjadi gula-gula sederhana (monosakarida)
dengan bantuan asam yaitu HCl dan panas. Monosakarida yang terbentuk kemudian dianalisis dengan Metode Luff-Schoorl. Prinsip analisis dengan Metode Luff-Schoorl yaitu reduksi Cu2+ menjadi Cu 1+ oleh monosakarida. Monosakarida bebas akan mereduksi larutan basa dari garam logam menjadi bentuk oksida atau bentuk bebasnya. Kelebihan Cu2+ yang tidak tereduksi kemudian dikuantifikasi dengan titrasi iodometri (SNI 01-2891-1992).
Reaksi yang terjadi (1.2):
Karbohidrat kompleks → gula sederhana (gula pereduksi)
Gula pereduksi+ 2 Cu2+→ Cu2O(s)
2 Cu2+ (kelebihan) + 4 I-→ 2 CuI2 → 2 CuI- + I2
I2 + 2S2O3
2-→ 2 I- + S4O6
2-

Osborne dan Voogt (1978) mengatakan bahwa Metode Luff-Schoorl dapat diaplikasikan untuk produk pangan yang mengandung gula dengan bobot molekuler yang rendah dan pati alami atau modifikasi.
Kemampuan mereduksi dari gugus aldehid dan keton digunakan sebagai landasan dalam mengkuantitasi gula sederhana yang terbentuk. Tetapi reaksi reduksi antara gula dan tembaga sulfat sepertinya tidak stoikiometris dan sangat tergantung pada kondisi reaksi. Faktor utama yang mempengaruhi reaksi adalah waktu pemanasan dan kekuatan reagen. Penggunaan luas dari metode ini dalam analisis gula adalah berkat kesabaran para ahli kimia yang memeriksa sifat empiris dari reaksi dan oleh karena itu dapat menghasilkan reaksi yang reprodusibel dan akurat (Southgate 1976).
Pada metode Luff Schoorl terdapat dua cara pengukuran yaitu
1. Penentuan Cu tereduksi dengan I2
2.Menggunakan prosedur Lae Eynon
Metode LuffSchoorl mempunyai kelemahan yang terutama disebabkan oleh komposisi yang konstan. Hal ini diketahui dari penelitian A.M Maiden yang menjelaskan bahwa hasil pengukuran yang diperoleh dibedakan oleh pebuatan reagen yang berbeda.
-Monosakarida akan mereduksikan CuO dalam larutan Luff menjadi Cu2O. Kelebihan CuO akan direduksikan dengan KI berlebih, sehingga dilepaskan I2. I2 yang dibebaskan tersebut dititrasi dengan  arutan Na2S2O3. Pada dasarnya prinsip metode analisa yang digunakan adalah Iodometri karena kita akan menganalisa I2 yang bebas untuk dijadikan dasar penetapan kadar. Dimana proses  odometri adalah proses titrasi terhadap iodium (I2) bebas dalam larutan. Apabila terdapat zat oksidator kuat (missal H2SO4) dalam larutannya yang bersifat netral atau sedikit asam penambahan ion iodide berlebih akan membuat zat oksidator tersebut tereduksi dan membebaskan I2 yang setara jumlahnya dengan dengan banyaknya oksidator. I2 bebas ini selanjutnya akan dititrasi dengan larutan standar Na2S2O3 sehinga I2 akan membentuk kompleks iod-amilum yang tidak larut dalam air. Oleh karena itu, jika dalam suatu titrasi membutuhkan indicator amilum, maka penambahan amilum sebelum titik ekivalen.Metode Luff Schoorl ini baik digunakan untuk menentukan kadar karbohidrat yang berukuran sedang. Dalam penelitian M.Verhaart dinyatakan bahwa metode Luff Schoorl merupakan metode tebaik untuk mengukur kadar karbohidrat dengan tingkat kesalahan sebesar 10%.
Dalam proses pengujian ini yang menjadi indikator proses analisa berhasil atau tidak yaitu saat penambahan larutan sampel dengan amilum. Bila terbentuk warna biru tua maka prosesnya benar, namun bila tidak terbentuk warna biru tua berarti larutan KI yang telah ditambahkan telah menguap dan proses dikatakan salah. Pada sampel yang kelompok kami uji, yaitu larutan pisang, setelah melalui serangkaian tahap dan pada saat penambahan KI 20% mengalami perubahan warna menjadi biru tua hampir hitam. Hal ini menandakan proses analisa yang kami lakukan benar dan sesuai dengan teori.
Untuk mengetahui kadar I2 yang bebas dilakukan titrasi dengan Natrium Thiosulfat karena banyaknya volume Na.Thiosulfat yang digunakan sebanding dengan banyaknya I2 bebas yang dianggap sebagai kadar gula. Titrasi ini dihentikan hingga warna biru tua hilang dan larutan berubah warna menjadi putih..

2. Analisis total karbohidrat dengan Metode Anthrone sulfat
Penggunaan Metode Anthrone untuk analisis total karbohidrat mulai berkembang sejak penggunaan pertama kali oleh Dreywood pada tahun 1946 untuk uji kualitatif. Dasar dari reaksi ini adalah kemampuan karbohidrat untuk membentuk turunan furfural dengan keberadaan asam dan panas, yang kemudian diikuti dengan reaksi dengan anthrone yang menghasilkan warna biru kehijauan (Sattler dan Zerban 1948) dalam Brooks et al (1986).
Anthrone, C6H4COC6H4CH2, adalah turunan dari anthraquinone. Senyawa ini diproduksi oleh reduksi katalitik dari anthraquinone oleh asam hidroklorat dengan keberadaan logam timah. Senyawa ini mungkin ada dalam bentuk keto atau enol, yang masing-masing dikenal dengan nama anthrone and anthranol. Reaksinya dapat dilihat pada persamaan (1.3):
(1.3)
Mekanisme pembentukan warna anthrone dengan gula telah diteliti. Hurd dan Isenhour (1932) dan Wolfrom et al (1948) mempostulasikan bahwa karbohidrat dan turunannya mengalami pembentukan cincin dalam keberadaan asam kuat dari mineral, seperti yang ditunjukkan untuk glukosa (1.4):
(1.4)
Tiap tahap adalah pemecahan dari glukosa(I) menjadi 5-(hydroxymethyl)-2-furaldehyde(IV) menunjukkan dehidrasi baik pada double bond atau pembentukan cincin. Wolfrom et al. (1948) menunjukkan bukti spektroskopik untuk senyawa intermediate (II) dan (III) pada reaksi ini Sattler and Zerban (1948) menyarankan bahwa pembentukan warna hijau pada reaksi anthrone tergantung oleh keberadaan 5-(hidroksimetil)-2-furaldehid, atau senyawa furfural yang mirip, yang dibentuk
oleh reaksi asam sulfat pada karbohidrat. Momose et al. (1957) melakukan kromatografi pada ekstrak benzene dari pewarna terhadap alumina dan menunjukkan bahwa bagian yang dapat larut dari benzene-terdiri dari beberapa
pewarna yang memberikan pewarnaan yang berbeda dengan asam sulfat. Mereka menentukan berat molekul dari salah satu pewarna utama yaitu kurang lebih 530, dan mempostulasikan formula dari pewarna itu (C47H30O3). Mereka menyimpulkan bahwa 3 mol anthrone bereaksi dengan 1 mol glukosa, yang digambarkan dalam persamaan (1.5):
3C14H10O + C6H12O6  C47H3O30 + 5H2O + CH2O (1.5)
Dari data analisis dan spektrum inframerah dari pewarna, dan mekanisme reaksinya dipertimbangkan, mereka menduga struktur yang mungkin adalah 1,2,5,- atau 1,3,5,-trianthronylidenepentane. Ludwig dan Goldberg (1956) melaporkan adaptasi dari Metode Anthrone kolorimetri untuk analisis total karbohidrat secara kuantitatif pada pangan. Metode yang digunakan relatif cepat dan akurat serta lebih baik daripada metodologi analisis karbohidrat sebelumnya, yaitu metode
Somogyi-Shaffer-Hartmann yang menggunakan teknik teknik iodometri dan prinsip gula pereduksi. Mereka menunjukkan bahwa persiapan hidrolisis dan deproteinisasi tidak perlu dilakukan ketika teknik anthrone digunakan.
Uji Anthrone ini memiliki kelebihan dalam hal sensitifitas dan kesederhanaan ujinya (Koehler 1952).Sejumlah kecil karbohidrat dapat memberikan warna yang terdeteksi dengan menggunakan spektrofotometer. Dreywood (1946) melakukan uji spesifisitas dari reaksi dan membuat daftar 18 jenis karbohidrat, termasuk beberapa turunan selulosa, yang memberikan hasil positif. Dia juga melaporkan hasil negatif terhadap kelompok besar nonkarbohidrat, termasuk sejumlah resin sintetik nonselulosa, asam organik, aldehid, fenol, lemak, terpena, alkaloid, dan
protein. Nonkarbohidrat yang menunjukkan hasil positif hanya furfural, tetapi hasil positif ini cepat menghilang karena warna hijau dikaburkan oleh presipitat coklat. Morris (1948) juga menunjukkan spesifisitas anthrone untuk karbohidrat sangat tinggi, dan dia melaporkan reaksi positif untuk semua mono-, di-, dan polisakarida murni yang diujikan, juga sampel of dekstrin, dekstran, pati, polisakarida tumbuhan dan gum, polisakarida tipe II dan II dari pneumococcus, glukosida, dan senyawa asetat dari mono-, di-, dan polisakarida. Kekurangan dari Metode Anthrone adalah ketidakstabilan dari reagen (anthrone yang dilarutkan dalam asam sulfat), sehingga perlu dilakukan persiapan reagen yang baru setiap hari.
Dreywood (1946) memperhatikan bahwa panas yang dihasilkan oleh pelarutan asam sulfat merupakan bagian yang penting dalam uji. Morris (1948) melihat signifikansi dari panas pada reaksi anthrone dan menunjukkan bahwa pada sejumlah karbohidrat yang diberikan, intensitas warna bervariasi dengan jumlah panas yang dihasilkan. Oleh karena itu kurva standar juga perlu dibuat setiap hari.
Nilai total karbohidrat tidak dapat dinyatakan dalam persen karbohidrat, tetapi lebih baik dinyatakan dengan istilah glucose equivalents per cent, karena kepekatan warna yang dihasilkan dari reaksi anthrone bervariasi dengan tipe gula yang ada. Kepekatan warna yang sama contohnya, ditunjukkan oleh 100 μg. glukosa, 105 μg. maltosa, dan 111 μg glikogen. Gula murni lain selain glukosa dapat dikalkulasi dengan faktor konversi. Tetapi jika terdapat campuran karbohidrat yang tidak diketahui pada bahan pangan faktor konversi itu tidak dapat digunakan, dan hasilnya bukan persentase karbohidrat absolut, melainkan ekuivalen glukosa, yang dapat bervariasi dari nilai persentasi karbohidrat yang sebenarnya dengan jumlah yang tidak dapat ditentukan. Keganjilan ini tidak signifikan ketika nilai glucose equivalents per cent digunakan hanya sebagai basis untuk mengkonversi nilai total karbohidrat menjadi nilai total pangan (Beck dan Bibby 1961). Untuk tujuan ini glucose equivalents per cent hanya sebagai indeks dari persentasi absolute dari masing-masing karbohidrat dalam pangan.

 
Copyright (c) 2010 noer haey. Design by WPThemes Expert

Blogger Templates and RegistryBooster.